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A note on shock flow in a channel 

By ROY GUNDERSEN 
Department of Mathematics, Illinois Institute of Technology 

(Received 20 December 1957 and in revised form 25 March 1958) 

SUMMARY 
A shock wave is generated by a uniform compressive piston 

motion and passes into a channel of slowly varying cross-section. 
A relation in closed form is obtained between shock strength 
and the area of the channel and is used to discuss converging 
cylindrical and spherical shocks. 

1.  INTRODUCTION 
Using a linearized theory based on small area variations, Chester (1953, 

1954) discussed the motion of a uniform shock wave passing through a 
two;dimensional channel composed of two uniform cross-sections separated 
by a section of slowly varying cross-section. The fluid in front of the shock 
was at rest; initially, the flow behind was isentropic, but when the shock 
entered the transition section the shock strength was altered and the 
subsequent flow was not isentropic. The disturbance depended on the 
area but not on the shape of the cross-section; it consisted of two 
perturbations : a permanent disturbance due directly to the area change, 
and a transient disturbance, propagated with sonic velocity relative to the 
flow behind the shock, due to the reflection of the permanent disturbance 
from the shock. The pressure change behind the shock was determined. 
Chisnell (1957) integrated this first-order relation to obtain a functional 
relation between the channel area and the shock strength, and used particular 
channel shapes to discuss converging cylindrical and spherical shocks. 
His results agree closely with previous similarity solutions obtained by 
Gudedy (1942) and Butler (1945). 

In Chester’s solution, the shock has, so to speak, come from infinity, 
and there is no possibility for reflections to occur upstream of the shock. 
In a discussion of the non-steady flow in a channel of slowly varying 
cross-section, linearized with respect to small area variations, the present 
author obtained Chester’s solution on the basis of one-dimensional theory. 
A simple but interesting generalization is to assume that a shock is produced 
by a uniform compressive piston motion ; when it passes into a channel of 
varying cross-section, there are three distinct contributions to the 
disturbance : a permanent disturbance due to the area change, a transient 
disturbance due to reflection from the shock, and also a transient disturbance 
due to reflection from the piston. This problem was solved by the author 
(Gundersen 1958) for the case of a slowly converging or diverging 
cross-section, and an expression was given for the pressure change 
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directly behind the shock. This differential relation is integrated here 
in closed form to give a functional relation between channel area and shock 
strength. Since the shock strength is uniform over its area for the 
symmetrical converging cylindrical and spherical flows, this result can be 
utilized to discuss such flows. 

2. THE RELATION BETWEEN CHANNEL AREA AND SHOCK STRENGTH 

The fluid is assumed perfect with constant specific heats. Denote 
by y the adiabatic index, by Po and co the pressure and sound velocity 
in the gas at rest in front of the shock, by w the shock velocity, and by up, 
P2 and c2 the fluid velocity, pressure and sound velocity behind the shock. 
Let w2 be the shock velocity relative to the flow behind it, so that w2 = w - u2, 
and let Mo, Ml and m denote the following Mach numbers, Mo = w/co, 
Ml = w2/c2, rn = u2/c2. Then from the usual formulae for a normal shock : 

W y - 1 + 2 M t 2  
w2= (y-l+2M,2)- 

y + l ’  l -  2y-(y- l )M(f5’  . .  

P2 = ( 2 y M , 2 - y + l ) P ,  2w(l -M<2) m =  2(1-M2) 
u2 = 

y + l  ’ (Y + 1 )Ml’ y + l ‘  
I t  is convenient to express the cross-section of the tube in the form 

E ( x )  = Eo + El(x), where Eo is the original uniform cross-sectional area. 
In  terms of Mo, Ml and m, the pressure perturbation directly behind the 
shock, for El(x) = Kx (where K is a constant, positive for a diverging section 
and negative for a converging section) and when the shock is produced by 
a uniform compressive piston motion, is 

There is a small error in the previously presented K, which is due to the 
omission of a factor of 2 in the next to last equation on page 564 of the 
previous paper, which should have read 

P2 = - (P2 - Po)El Ec1K. (1)’  

so that equation (8.2) should have read 

This last expression also appears on page 575 with different subscripts, 
and the correct expression in terms of the parameters Ml, Ml and m is 

s z =  c v ( y - l ) w - ~ { 4 ( l - M ~ ) [ ( y + l ) ( l - M ; ~ ) ] - ~ +  
+m2-2+2(y-l)(y- 1 +2M,2)-1). 

When this expression is substituted into the defining equation for K, on 
page 576, the correct K of (1)  is defined by 

2(y- 1 +2M;2)(y+l)-1K-l 
= 2Mf + rnMl(l - M,2) + ( 1  + M,2) - ( y  - 1 +2M,-e)(2y)-1 x 

x {4( 1 - M f ) [ ( y  + 1)( 1 - Mr2)]- l  + m2 - 2 + 
+2(y-l)(y-l+2M,2)-1), 
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and is a monotonic decreasing function of the shock strength. For y = 1.4, 
K varies from 0.500 for weak shocks to an asymptotic limit of 0.259 for 
strong shocks. I n  Chester’s solution, the variation of the corresponding K 
is from 0.5 to 0.394. 

T o  facilitate comparison, Chisnell’s notation will now be utilized when 
possible. If the initial shock strength is defined by P2/P, = z ,  (1) takes 
the form: 

1 dE 1 - - - _ _  
E d .  ( ~ - l ) K ( z )  

(72-  l)(z- 1) 
2y2z[(y- l ) z + y +  11 

(Y - 1) [(Y + 1 >. + Y - 11 + 

2y”(-” - 1) + - - 

Integration gives the relation between area and shock strength, but as 
Chisnell points out, for the case of two uniform channels connected by a 
transition area of varying cross-section, the result gives the average strength 
of the shock after the area change only if the total change is small. For 
large area changes, it will be only an approximation to the average strength. 

The  integration of (2) gives 

E f ( z )  = const., 
where 

f(z) = ( z  - 1)2z(1-~)/2~[(y - 1 ) ~  + y + 1](3--~,/2(~-1), 

For weak shocks ( z  nearly unity), f(z) behaves like ( z -  1)2 for y = 1.4, 
i.e. the acoustic result that the strength of the disturbance varies inversely 
as the square root of the area of the disturbance. 

As pointed out by Chisnell, the above results are applicable to converging 
cylindrical and spherical shocks if channel areas are proportional to R or R2, 
respectively, and R is the distance of the shock from its axis of symmetry. 

Near the point of collapse of the symmetrical shocks, z is very large, and 
f(z)’behaves like zl/g, where K, the asymptotic limit of K(z) ,  is 

Hence, for cylindrical and spherical shocks near their axes of symmetry, 
the strength is proportional to R - K  and R-2K, respectively. The  following 
table compares the values of K with those obtained by Chisnell for the 
corresponding number in his paper. 

Chisnell This paper 

Y = x  6 0.326223 0.155844 
y,l 0.3 94 141 0.259259 
y = i 5 0-450850 0,357143 

5 
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For y = j ,  f, 0, the numbers of the present paper are about 52%, 34% 
and 21%, respectively, smaller than the numbers given by Chisnell, i.e. 
the perturbations reflected from the piston reduce the ultimate shock 
strength, near the point of collapse, to a value less than in the Chisnell 
determination. 
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